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%>* INTRODUCTION 

i   T. 

Five paper« dealing with practical aspect» of theoretical work done 
at the Applied Physics Laboratory on the subject of the aerodynamic char- 
acteristics of wings in supersonic flow are presented in this BUMBLEBEE 
report. These papers, which hare appeared as internal memoranda of the 
Applied Physics Laboratory, represent the combined efforts of APL/JHU 
personnel and outside contributors as noted in the references. 

The first paper derives lift coefficients and center of pressure 
location for fiat plates of polygonal planform from fundamental consid- 
erations, using Busemann1s conical field method. The other papers utilize 
Busemann** second order approximation formula to determine the aerodynamic 
characteristics of certain types of wings having finite thickness. Con- 
sequently there will "be some overlapping of results, hut no material is 
deleted inaiimuch as the two methods are quite different. Attention is 
called, however, to differences in nomenclature "between the first and 
the remaining papers. A short discussion of the sectional properties 
of various airfoil shapes and the optimum type is given at the end of 
this report. 

It is believed that these papers cover most of the unclassified 
engineering work on the effect of wing planforms available at this time. 
The work is by no means complete, there being many practical planforms 
for which no theory has been developed, particularly in the case of wings 
with finite thickness. Accordingly the table on the following page has 
been constructed to indicate the types for which information can be found 
in this report, to show where it can be found, and to indicate the mist- 
ing data. In this table the Roman numeral refers to the paper in this 
report as indexed in the Table of Contents, whereas the Arabic numeral 
refers to the page ©a which the expression for the particular coefficient 
may be found. An X indicates that the exact information is not yet known. 

• W 

il. 
1 '* 

vii 

.Iti fi-JTmt 



4 

tef 
- 

o> 
•3.2° N « M H M K H H 

VI 00 CO 00 • 
00 it >A 1 

H 
1 

H 
1 

• 

£< ^\ 
M M HI W H H K 

ja <! Yi I »0 «0 
IO 

IS 
IO IO 

r- 5ig 
\ \ 

K M 
IÄ 

K i£ >l 
0 ^ M M M 

< ^ \\ H 001^ C0l> • «> to 10 
toio 

e» ^- 
p \ NV. CO tfl HW i~»tf *UJ- 10 IO s ^\ ^T H    f 1   I (    1 1 1   • t I 

\ ^ 1   > M*» H»> 0 
MIß 

•• • 
M M M M M »-« M 

V to *«. i^ <o N P- 
J3 IO IO IO so IO !0 
<o "O CVi A 1 1 1 1 H 1 1 c Nv t- J» • • t» > 

0 >J M M M M M M 

F3 \ A t « f- e^ 
o V^ 9» «O 0> fr. Ott- «to to IO 
to 0 — <\ H «ZJ H 10 t-HC • J J 1 

^N\ •  J » J • J 6» H • • 
^V Ml* «>» M> »-* M M 

M M t* 

J3 
TO 
in *8 8 IO IO ^v m 

a 
in 

CM 

-3, N M 
M 

M M 
»1 
M M 

as 
0 

N 
too «© 

H 
{ 

M 

to 

J 
M 

e 
^ 

8 IO IO X- >j *-» M M Hi 1 

«}• 

-a* A • 
• 
» 

• 
• 

« 
• s 

>    01 

Üb > #K *H M c M M 

-O 
to 

o 
to 

Ti
p 

or
 

zo
id

al
 

1  
   

2 

v 

s 
M 

to 

s 
M 4 

H M H H 
\i 

s 
s 

T>CJ 
©a 

\              ; IO 

3 1 • 
« 

X 
/ 

l 
^  

A 4 A M w K M 

<M c 
.3 
01 

cv 
fr- to Nt! ^ to £ to 

1   1 
M M 

1    1 
M M 

1    1 
M »• 

1 
M 

» 
M 

1 
M 

1 
M 

as M M »- M M M M 

'•fir 
tO 
I 

r* 
= 0 

u. a. 
C<0 

> tC 
1 

M 
1 

•H 

to 
1 

M 

to 
1 

M 

to 
i 

M 

**• 
to 

1 
M ' M •H:     H »H M M M 

c 
0 JZ   > u 

0 
0 5 

* 
a. _J 

O s * a. 
4J 
Q. 
'IZ 

0 0 U O <j O O u ü 
, 

CO <rt< 9TDld   TD!d I! 0JJI V 

\ 

© 
pH 
M 

^ 0 

Jd <H 
O ^ 
crt •H 

2-, 

/ 

• 

r -d 
\ © 

> *» 1 Pi 
^ \ M 4* 

\ '^ © \ O Ä 

A • 
43 

3 a 
0 • 
u cd 

<--N *H «H © 
0 0» H M 

© M^< © cd 
W) El   CO Ö 

g, •H    P. 0 «H 
>   -P 0 0 

•a U   U A •d 
a 0 0 •H 

crt H «! O 

ö M PS 
S *> 

43 
0 ß   -H © Ö 

•H ce -d A © 
+» •H    CO •p O 

% 
u  © 

«M 43 
to 

H ^^ 
O cd 

O H   © +> CO 
•P cd   W i •H 

^ f-i   © © 
© O ^•^ U 

<H <H  -P © P 
9 C9 0 CO 
U •d © •H co 

ffl -p rH • © 
« a   In * CO ^ 
H P   O © -d © P< 

Ä to A 
03   CO cd 

© 
43 ß «H 

3 B? M 43 43 O 
© PH 0 

•3 to Jd »d © J-) 
A at -p •P co © 

> cd t>r. © 43 
& «H H J3  Ä Ö 
•H t © 0 V* 43 © 
J3 = CO •d 0 

> <H   4» U © u 
H O ie >H 0 43 0 u 
OS u S   53 «M crt «H 0 

u CC    Tl 0 •^^ 
•^ a P,H © 3 •d -d 
Ö CO P © § (A © © 1-4 0 ö 

CD O A flS •H •H 
rl u •H   43 >> v_^ s H 
CQ a •P ^ cd 
B > a) -d O P* © ß 
O © M ä •p •H 43 0 

P4 Pi 0 43 q) •H 
^x c to  S <D •d CO 

CO    © CO •d ß 
tJ a> fit O fi © © 
© 

$   CO 
H M •0 (3 

rH O CD •H 
H O   W) ^ 0 •d 
Ct =ri   fl 1? 

CO 1 
O Ä 'H © rH 0 

-P   > © X CO > 
a J> 43 43 
© *»   ft Ö 
a Ö «H © «H cd a 

•H (Ö  +> J3 0 0 1-t 
•P •P 
© CO i-H © 43 
e Ö H to «H 
0 0 •H crt •H 
C/l 0 ^ 0 Hi 

* + « 
* t • 

» 
• 

Till 

„> ^Ow „•; ^•m»);1» w.iyiijiinip«j ,w. 



I. APPLICATION Or BUSXHAHIP S COHICAL flELD METHOD TO THIS WINGS» 

"by Robert M. Snow 

Introduction 

In this paper the pressure distribution, lift coefficient and center 
of pressure are determined for several plane wings of polygonal planfora 
at small angles of attack, "by the method of "conical fields". The effect 
of a dihedral bend is also obtained. Squares and products of perturbation 
velocities have been neglected, since the method is based on the Prandtl- 
Glauert linearised potential equation. Modifications due to wing thick- 
ness, viscous effects, and interference effect (with a fuselage or with 
other wings) are likewise neglected. 

The method of conical fields in supersonic aerodynamics was developed 
by Busemann (Ref. 1), who applied i't to'several important problems. Stew- 
art (2) has solved ths problem of a delta wing by essentially the same 
method. A conical field corresponds to a linear homogeneous solution of 
the linearised (or Prandtl-Glausrt) potential equation for supersonic 
flow: 

(1) 

Here M is the Mach number of th6 main stream, which is moving along the 
i - axis. The perturbation velocity components (u, v, w) are also solu- 
tions of Eq. (1) and are homogeneous of degree zero, i.e., u, v, and w 
are constant along any ray emanating from the origin. The particular 
simplicity of conical fields lies in the fact that after a transformation 
the perturbation velocity components (u, v, w) are obtained as solutions 
of Laplace's equation in two variables* Busemann credits this transfor- 
mation to Chaplygin, (3) who made use of it in a formally similar problem. 
Since the general theory has baen discussed recently by Stewart (2) it is 
only needed to. state the principal result in the form in which it will be 

Ml^—__— ,—_ 

* This paper is a revision of CM-265 originally published as an internal 
memorandum of the Applied Physics Laboratory. 
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2 Aerodynamic Characteristics of Wings at Supersonic Speeds 

utilized. Let/W be the Mach angle (sin""1 l/M), and x, y, z a rectan- 
gular coerdiiyite system with the z - axis pointing downstream, and 

p=tarry/x R=    g
y A=tcn )i 

The transformation 

r 

2Ar 
+ r2 

is such that homogeneous functions of degree zero which satisfy Eq. (1) 
also satisfy Laplace's equation in the polar coordinates r, <p    ). 
The evaluation of the streamwise component (w) of perturbation velocity 
is of primary importance since the aerodynamic forces on the wing are 
determined by w alone. This follows from the linearized Bernoulli 
equation, 

p = p-pWuj (3) 

which, like Eq. (1), results from neglecting squares and products of 
perturbation velocities in the corresponding exact equation. In many 
problems of this type, including those considered here, w may "be deter- 
mined without further reference to the components u and v. 
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Application of Busemann's Conical Field Method to Thin Wings 

Characteristic Cones, Boundary Condition« 

To illustrate the type of "boundary condition needed to determine 
the conical field, consider the special case of a rectangular wing. 
This rectangular wing may he regarded as the result of cutting off the 
snds of a two-dimensional airfoil. This operation causes a modification 
in the flow (originally two-dimensional), which may "be referred to as 
the "tip effect". In this connection, a fundamental distinction should 
be made "between subsonic flow and supersonic flow. For subsonic flow 
(differential equation of elliptic type) the tip effect dies off asym- 
pototically with increasing distance inboard. For supersonic flow (dif- 
ferential equation of hyperbolic type) the tip effect falls to zero at 
a certain finite distance, and the entire effect is contained within 
a region hounded "by real characteristic surfaces. For linearized super- 
sonic flow, the domain of influence of any point is hounded "by a "Mach 
cone", which is one nappe of a cone opening downstream with semi-vertex 
angle equal to the Mach angle/* . Figure 1 represents a section hy a 
plane perpendicular to the 
main stream. The Mach cones 
from the tips of the leading 
edge divide this plane into        ___ 5_ 
three types of regions. In 
the central region (I) the 
flow is in all respects the 
same as if the wing were of . 
infinite span, "because no 
point of this central region 
lies in the domain of in- 
fluence of any point removed        * GSHX-"Vft-!,boul 
in the mental process of oh-        n ^.^ FWd 
taining the rectangular wing 
from an airfoil of infinite 
span. On the other hand the 
perturbation velocity compon- 
ents are zero in the exterior 
region (III), because no FIG. I 
point of this region lies in FLOW FOR RECTANGULAR WING, 
the domain of influence of SECTION BY PU^ PERPENDICULAR 

any point on the rectangular 
wing. The requirement of con- 
tinuity leads to boundary con- 
ditions which must be satisfied by the perturbation velocity components 
u, • and w on the boundary of each conical transition region (II). On 
the boundary between regions (II) and (III), u, v and w must vanish. 
On the boundary between regions (I) and (II), u, v and w take on the 
(constant, two-dimensional) values of region (I). 

Similar statements apply also to the example of a swept-back lead- 
ing edge (Fig. 2). The two lines forming the leading edge are, of course, 

m 

HI   Frte Stream 
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Aerodynamic Characteristics of Wings at Supersonic Speeds 

finite in the actual caae, hut 
the effect of their finiteness 
will he confined "by character- 
istic cone» passing through 
the points at which the leading 
edge changes direction. The 
possiMlity of treating more 
general polygonal wings "by 
this method follows from these 
remarks, for the polygons that 
may he treated by this method, 
there are isolated regions of 
uniform flow (identical with 
the flow for an infini'te wing 
at a certain angle of yaw) sep- 
arated by regions of transition 
in the Mach eenes which start 
from each vertex of the polygon 
and open downstream. It is 
convenient in the following 
discussion to refer to these • 
special Mach cones simply as 
"the Mach cones" or "the Mach 
cone*. 

Plorifarm for difinltion 
of  »ymboli. 

Airflow i« toward bottom of pcgt. 

m 

Section by plant pcrptndlcular to ttriam 

I, Flo« tome a* for infinit« tpor. airfoil at angl« of yaw Tf/2 - i, 
I, Flow tarn« at tor Infinite span airfoil at anglt of yew Tr/2-St 

E Ccniccl Flfld 
TU  Fr«« Stream 

FIG. 2 

FLOW   FOR 
SWEPT-BACK LEADING E06E 

Boundary conditions must 
also be given over that part of 
the wing which lies inside the 
Mach cone. The velocity component normal to the wing must have the same 
value as on the rest of the wing, because of the condition that there 
be no flow through the wing. The boundary condition for w is that the 
normal derivative of w be sero on the wing. This follows from the re- 
quirement of irrotationality (implicit in the use of the potential $ ), 
80 that Sur = JW_ 

dy 
and the condition that ^ is constant on the wing. The fact that the wing 
does not lie exactly in the plane y s 0 is neglected; this has no effect 
on the first order perturbation. This simplification is made throughout, 
so that the angle of attack enters only in the boundary values and not in 
the position of the boundaries. 

Rectangular Wing 

The problem of a plane rectangular wing was successfully solved 
by Busemann (1), by essentially the method employed here. Schlichtlng 
(4) had previously considered the same proDlem by a difterent method, 
and obtained a false result because of an analytical error. When this 
error is corrected, Schlichtlng's method becomes consistent with the 
conical field method, not only for rectangular wings, but also for the 
raked wings considered in the next section. (Baked wings were not treated 
by either of these authors, but their methods are easily extended to this 

case.) 

—rs:raargar—T 



Application of Eusemann» 8 Conical Field Method to Thin Wings 

Attention may "be confined to one end of the wing. The origin of 
coordinates is taken at the end of the leading edge. The positive x - 
axis is directed spanwise away from the wing. The y - axis is normal 
to the wing; the direction of the positive y - axis may "be regarded as 
"upward". The positive s - axie is in the direction of flow (the co- 
ordinates "being such that the wing is considered to "be at- rest with the 
air flowing past it). The velocity of the.incident flow is W , the 
angle of attack fit , and the Mach angleyu « sin-1 1/M. For a wing of 
infinite span, the usual tvo-dimensional theory* gives 

VJ - ocWtanjui sur00 
above the wing and 

JX)=  ~VJ. 00 
below the wing. In terms of the polar variables R and (p , the "bound- 
ary conditions foru? are: 

!^ =0     for   <?=±TT$  0<R<A 
3cp 

w^+w* for   Tg«j<TT,   R = Ä 

TT Tf 
tü=0       for  —?r<$< + 2* * Rs Ä 

Tf 
vj*-wm  for   -Tf<<?<--£> R-A 

These "boundary conditions of course apply equally well in the(^(p) 
plane, replacing the circle E - A "by th« circle r = 1. 2o find w, it 
is only necessary to solve Laplace's equation in the polar coordinate! 
r and<p with the above boundary conditions. The solution may be con- 
structed by the usual method« from the particular solutions r8 sin sqp. 
From the first boundary condition it i» seen that S must be half of an 
odd integer. The moat general function which is harmonic in the cut 
circle, which satisfies the required conditions along the cut, and'which 
is an odd function of <p   (as required by the symmetry of the boundary 
conditions) is 

n«o 

* See, for example, von Misse and Friedriche, fluid Dynamicst p. 837, 
Brown University, 1942. 
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Aerodynamic Characteristica of Wings at Supersonic Speeds 

This is not the conventional Fourier eerie* for a function which is 
periodic with period ZrfT  j however, it is useful to notice that the 
series is periodic with period ^TT • This suggests the extension of 
the problem to a two-sheeted Riemann surface "by analytic continuation 
across the cut. It is convenient to retain the symmetry "by consider- 
ing f  to range from - gfT to 4- ÜTT ', 

then the "boundary values on the arcs in the "lower" sheet of the Riemann 
surface (that is, ~2ir<<p<-7T «"d V< <p< Zir) 

are to be assigned in such a way that the even harmonics, which cannot 
appear in the series for w drop out. This is done "by assigning bound- 
ary values in the lower sheet which are the negative of the values at 
corresponding points of the upper ("physical") sheet. Then 

Aft=-"°° 
•v2 »Vg 

J sin(n+,/2)<pd9 + ^Jsin(n+^) <pd<p 2TT 

(-!)n4WcD   sintn + ^yfe 
'z\ \ 

IT 2n +1 
Using the symbol R to indicate "real part of", the Fourier series for 
w say "be written as 

For 

n*o 

n+'/« r •/ %z\   2 r     ifT 171 + U 

2n + I 

- -^«{lort- [vr.^-1^ . tarr. [^(V\)]) 

l-r l-r 

9 = 
w TJJ       2  .    ., \/§r     2    . _,   /^T 

+ fl-iC-Tfton   T7'lfi,nVHTt 

(4) 

2    . ., fW 
Tf Sm V A 

(5) 

(5«) 
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Application of Busemann'B Conical Field Method to Thin Wings 

On the lower surface of the wing 
(9 = -•»•; 

w is merely changed in sign. The right member of Eq. (5) or (5" ) is 
shown as a function of R/A in Fie 3. From the form (5'), it is clear 
that the curve is symmetric with respect to the point (1/2, 1/2), so 
that the average value of w along any spanwise line from R = 0 to R = A 
is just Woo/2. The triangle cut off by the Mach cone contributes just 
one half as much to the lift as an equal area located in,the region where 
two-dimensional calculations are valid, (it will he seen in the next 
section that the same simple result holds for raked wings with leading 
and trailing edges perpendicular to the flow.) Formulae for lift co- 
efficient and center of pressure are now easily obtained. If Cj, QO 

is the lift coefficient for a plane wing of' infinite span, and C^ the 
lift coefficient for a rectangular wing of total span 8 and chord ct 

l-g"! tanjj. (6) 

•oo 
The center of pressure is located at a distance hack from the leading 
edge expressed "by 

z = 
p      Q 

(7) 

2    l-l/gG/gtanjx 

The above discussion tacitly 
assumes that the two Mach cones from 
the tips do- not intersect on the 
wing. However, this restriction is 
seen to be unnecessary. If $, is 
the (disturbance) potential inside 
one of the cone's, $a the potential 
inside the other cone, and$c© the 
potential for a wing of infinite 
span with leading edge perpendicu- 
lar to the stream, then in the 
region common to the two cones the 
potential is $ = $,+"$5>-$t>0  • ^° 
verify this, it may be noted that 
$ii$j,a«(i$oo  are solutions of 
the Prandtl-Glauert Eq. (1), and 
since that equation is linear, <£ is 
a solution as well. Also $ and its 
first derivatives (u, v, w) are con- 
tinuous across the conical surfaces 
bounding the region in question. 
It may be said that the "tip effects" 
from the two tips are additive, 
since the equation defining <| may 
be written 

'z    0.8 
<n 

w|{= 0.6 
II 

s 04 

0.2 

0 

    

0.2 0.4     0.6    0.8 
X = Vjtan ;i 

10 

A is the fractional distance inboard, spanwise, 
from the wing tip to the Mach  cone. 

FIG. 3 

PRESSURE  DISTRIBUTION ALONG SPAN 
FOR  RECTANGULAR   WING OR   FOR 
RAKED-BACK RECTANGULAR   WING 
WITH   \1\<M 

(*.-*)=(»--»,)+ (*--»8) 



&mzä^j?i® 

8 Aerodynamic Characteristics of Wings at Supersonic Speeds 

It should "be noted that the flow in the region in question is not a "conical 
field". The combination of the two conical fields with different vertices 
is never a conical field, although it approaches a conical field asymptoti- 
cally downstream. 

This solution is limited "by the condition that the Mach cone from 
one tip should not intersect the other end of the wing. If this happens 
a further alteration is needed to satisfy "boundary conditions at the edge, 
and the difficulty of the problem is incrsased enormously. 

Since overlapping "tip effects" are additive, the lift coefficient 
and center of pressure are easily calculable as long as the Mach cone from 
one wing tip does not cut the other wing tip. After calculation, it is 
found that Eqs. (6) and (7) also'hold for the overlapping case. It may 
he noticed that as the quantity5tan u  increases fron 0 to 1 (the highest 
value for which the solution applies;, the ratio C^/Cj, ^   decreases from 
1 to 1/2, and the center of pressure moves from C/2 forward to C/3. 

Baked King 

The following treatment applies to wings with a positive rake angle 
Ö, defined in such a way that the leading edge is greater than the 

trailing edge. If d>t/u  , the problem is quite simple. The pressure 
on the wing is uniform and is to he calculated from two-dimensional 
theory. This is seen "by considering the wing as carved out of an infin- 
ite span wing, which only Involves removing portions whose domain of 
influence does not contain any part of the final trapezoidal wing. 

If 0<$<^u  , the "boundary conditions differ from the previously 
considered special case of the rectangular wing only in that the "cut" 
or radial line on which ^kr/äris Q   (and across which w is necessarily 
discontinuous; does not extend as far as the coordinate origin. The 
cut along (paiTT in the (R, (p ) plane runs from R = A = tan/u to R = 
+ tan $  . In the (r, <J> ) plane the c it is still on the ray cps^TT 
and runs from r 3 1 to 

The new problem may be solved by finding a conformal transforriation 
which carries it back to the already solved problem of the rectangular 
wing. To do this it is advantageous to map both the new and the old 
problem onto a half-plane. Letting fs/fee*** , the transformation 

maps the upper half of the circle |cl^ I  onto the upper half plane 
IJVQ    . The transformed boundary conditions relate to the real 
axis f- 
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in = 0 for S,>0 
^ *    9 s **rl       tan JUL _ c 

w-0 for S,<~27f = -^TT = 5« 

TU = 10» for -l<S,a<0 

gf-0 for |.<§„<-l 

The ultimate objective is to find a transformation which connects the 
6 plane with the £,(=Ve*P) plane corresponding to a fictitious rectang- 

ular wing. The £' plane is mapped onto the %'    plane "by the same trans- 
formation which connects £, and %   . The "boundary conditions in the' %' 
plane are obtained from those in the %   plane "by setting §0= - oo 

The transformation which carries the € plane into the 4' plane is now clear; 
it siast he 'she homographic transformation which carries the points 

Into  °' 

This is easily found to "be 

or 

5= «.-8 

The transformation from the £ plane to the £ pi°ne is now known, 

since 
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10 Aerodynamic Characteristics of Wings at Supersonic Speeds 

By eliminating %    and %   it is possible to obtain 6 as a function 
of S • In the plane of the wing, where f*Oor7T and §*A//?e*f 
the result simplifies to 

de1*' Re^+Ro  ,   „  ^ 
sr —s ©, © = 0 or TT 

A    A-Ro   * 
Here »0, c?0 are the polar coordinates of the edge of the wing; <p0 is 
0 or 77» according as the rake is positive or negative. On the surface 
of the wings 

A~TTR:     t»t-Tr A  A-Ro 

As R1 goes from 0 to A, R goes from R0 to A, and the dependence of R
e 

on R is linear. Thus the lift for a raked wing also varies according 

f (*)*:§• sin"' VT 
ii 

where A * ft'/A is the fraction of the spanwise distance from the edge 
of the wing to the Mach cone. The function f (X) is shown graphically 
in Pig. S. Since it is now known that the spanwise average of lift from 
tip to cone is Just .one-half of the two-dimensional value, it is easy to 
derive formulae for lift coefficient and center of pressure. These formu- 
lae hold also if the Mach cones overlap on the wing witnout cutting the 
opposite wingtip. In other words, the formulae hold for ^•tftrt.ya £ I 3 
where 5 is the mean span, or average* of the span at the leading and 
trailing edges. 

, l" c .       , sL-sT 
-1-2 3 tan A*-5i- 

(n) 

(8>) 

Sj;( and .Sip are the spans at the leading and trailing *jdges respect- 
ively. She center of pressure is located at the following distances 
"behind the leading edge: 

Q   j-VsVston^ + '/jV« 
tanS, +fan S* 

?-".,*"      r      v    r  .     (9) 
2   I- %% tan >L + Vo c/s   tan St»tan St 
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It may "be well to repeat at this point that these results hold only for 
positive rake angles (Si,>Sip;. 

Bent Loading Edge 

A problem of considerable importance is illustrated in Fig. 2. 
The angles §, and 5j, are not necessarily acute angles, as in the case 
drawn, but each is assumed to lie in the range>a < % <tr -JU   . To 
simplify the immediate discussion it is assumed that the angle of the 
leading edge points upstream, so that 5l-*5*<tr  5 it is shown later 
that the formulae obtained are valid without this restriction. Evident- 
ly the wing separates the problem into two parts which may be tr««.ted 
independently. Attention may be confined to the upper half, since the 
solution for the lower half differs only in sign. The points on ehe 
circle for which ^- (3, , and ^?s7T-/3z mark tne tangency of the plane 
Mach waves from the leading edge with the Mach cone. By elementary 
geometry, 

cos /?, = tan juV tan Sj 
cos/6g = tan/i/tan 8% 

From a consideration of the "domains of influence", see (Fig. 2)  it is 
seen that the flow in the -regions I-j_, I«, III is as indicated in the 
legend of Fig. 3. As before, the normal derivative of w vanishes on 
the wing» All three components pf perturbation velocity vanish on the 
arc /&,<p<.1T-(lz ; on the other two arcs the boundary coriaitions are to 
be obtained from the essentially two-dimensional problem of an infinite 
span airfoil at an angle of yaw, to which we now turn. 

Let £ be the angle between the main stream direction and the lead- 
ing edge of an airfoil of infinite span, so that""/a - $  is the angle 
of yaw. It is assumed thatyU< %<.ir~yu     • ^he uniform flow W may 
be considered as a superposition of a uniform flow at velocity W cos 5 
parallel to the leading ed^j, giving rise to no perturbation, and a flow 
perpendicular to the leading edge at velocity W, =Wsin %      and effect- 
ive Mach number t1,s flsin 8 . The effective angle of attack (<dC. ) 
for this second flow is measured in a plane perpendicular to the lead- 
ing eclge; it is related to the streamwise angle of attack ( fif ), meas- 
ured in a plane containing the stream direction and perpendicular to 
the plane of the wing for zero angle of attack, by the formula 

tan oc = ton ccj sin 6 
Within the limits of validity of the linear theory we need not distinguish 
between the angle of attack and its tangent, so that 

or = c8 sin & 
For a plane airfeil of infinite span and not yawed, the streamwise com- 
ponent (w) of perturbation velocity is 

ocW    „ 
UJ = ccWtan a « 7==* = W 

» IY1   - I 
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12 Aerodynamic Characteristics of Wings at Supersonic Speeds 

To obtain the chordwiae coiflponent of perturbation velocity for an air- 
foil at an angle of yaw Wz - S , replace cC,Wand Mby c£t,VJt and M,. 
The streamwlse component of perturbation velocity follows from multi- 

\\       . plication by sin 8: g|W QCWsin S 
\'i w = • sm o « -.   
J4 ^MH "V^2sin28-!      (10) 

i 
or 

•<x> 
1*7= —r 

sin/? 
where, as "before,  cos ß = fan JLL/tan  6 

The "boundary conditions for the remaining two arcs of the upper 
semicircle are 

and 
VJ 

sin^2_'2 w = ¥*s = K2 for Tf-Ä«P<fl 
The potential proViem which is now uniouely determined in the upper semi- 
circle may he written out immediately as a Fourier series.    This is a 
cosine series only, "because of the condition that bur/dn*0 ior<p*ö and for 
for <f>-yr. 

TT +* Tf £/" cos n^{Kiy cos nu du + K2 j cos nu du) 
o tf 3 

= *&&** + jH^TSlffar tan- -t*KtÄL TT TT I       l-r cosft+ft)    u"   |-rcos(9~4) 

- £ ftan"»J^EÖ±^[% - fair' JJUPifcAL 1   (u) TC  I       J+rcos^+A) l+rcos(f-^2)J 
In Bq. (11) each inverse tangent is restricted to its principal values 
("n/z  to +1r»7a). The details of this summation are not much different 
than for the case of the rectangular wing, and need not "be dwelt upon 
here. 

In the symmetrical case S, = S^, the axpression (11) for w on the 
wing (<p*0,7T ) simplifies to 
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"U7 
IT  r \-rZco$2ß} 

- JL xu^. t   -i     ton/g 
"  Tf   sin* Tqn yp^j- (12) 

Returning to the general case ( 5, and S-^ot necessarily equal) we seek 
the average value of w along the segment of a spanwise line (i.e., per- 
pendicular to the stream) cut off "by the Mach cone. It is necessary to 
evaluate integrals such as 

«•— /tan '-T— — aR 
Ay    I - r cos TT 

Since Rfa-iA/i+A*   » integration "by parts leads to 
A 

Tf-r I   C  -i   r sin V     ._     Tt        _ 4TT- 
ÄVtan F75T? dR " 4 tan r + "-secr>"r 

o 
where o<Y=<2fT. Using this result it is found that the average value 
sought is 

^=-2L(Htan/9l-sec/?,)+-^(!+tan/92-sec/y2) (is) 

Case of Intersecting Envelopes 

For treating forward sweep or*dihedral, it is necessary to discuss 
the plane waves from the leading edge in more detail. On one aide there 
is a weak shock wave and on the other side a weak expansion wave; how- 
ever, in the linear theory the distinction "between shock waves and rare- 
faction waves disappears.* Both are regarded merely as surfaces of dis- 
continuity, which can occur only across the envelope of Mach cones with 

* It is this fact which makes possible the usual two-dimensional linear 
and second order calculations, in which the pressure is determined by 
local conditions and does not depend on the history of the flow up to 
that point. The entropy increase is of the third order in the pertur- 
bation velocity components, whereas the linear theory retains only the 
first order. 
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_»i-k.j 

vertex on the leading edge. As 
the simplest example, Pig. 4 
shows a section perpendicular 
to the main stream for the case 
of a wing with dihedral and with 
the leading edge perpendicular 
to the main stream. The situa- 
tion for a plane wing with for- 
ward sweep would differ only in 
that the trace LMJT of the wing 
in Jig. 4 would he straight, and 
overlapping of the plane waves 
would occur over the "bottom arc 
as well as the top. 

The envelope of all Mach 
cones with vertex on LM consists 
of two half planes with traces AC 
and ac. Similarly the Mach cones 
with vertex on MN give rise to 
the envelope represented by FG 
and fg. It is important to 
notice that no arc of the circle 
is a part of either envelope. 
Within the hounds of the linear 
theory, shock waves or rarefaction waves intersect without mutual inter- 
ference, and the perturbations caused "by each are additive. In the region 
G-BCM the flow is uniform; in the region ABFEL there is another uniform 
flow; in the region "between PBC and the circle the flow is also uniform, 
since the components of the perturbation velocity are obtained "by addition 
of the components of perturbation velocity for the other two uniform 
flows. This completes the specification of the boundary conditions for 
the upper part of the circle. When dealing with u, v, or w, the function 
sought assumes a constant value of EF, another constant value on CD (bpth 
of these constants obtainable from two-dimensional theory;, and a con- 
stant value on the arc FC, namely the sum of the other two constants. 
The boundary conditions for the lower part of Fig. 4 present nothing new; 
u, v, and w take on calculable (constant) values on the arcs Be and fD, 
and the value zero on the arc cf. 

In COM drown  Leading Edg« 
is Ptrpendicular to  Slrcom 

FIG. 4 

WING  WITH  DIHEDRAL, 
SECTION BY PLANE 

PERPENDICULAR   TO  STREAM 

Review of the problem illustrated by Fig. 2 now shows that the analysis 
given holds also for the case of a wing with forward sweep, that is, a 
wing with the angle pointing downstream. The only difference is a slight 
modification of Fig. 2. 
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Trapezoidal Wing 

The lift coefficient and center of pressure for the symmetrical 
trapezoidal wing shown in Pig. 5 may now TK studied. The leading and 
trailing edges are perpendicular 
to the main stream, and the tip 
angle (5 ) is greater than the 
Mach angle. Since the leading 
edge is perpendicular to the 
stream, £Ä 3 ßz s ff/z 
and the subscript may he 
dropped from $,   and ßt 
In the region I, 

Itf« 
= I. 

In the region II, the average 
w is found from Eq. (13): 

FIG. 5 

^-2+  2 sin/? 'OS 

In the region III, 

On taking the average of these quantities, weighted according to the 
area in which each applies, it is found that 

'L _ 

CL 
«I. 

(14) 

CO 

Similarly the center of pressure is found to lie behind the leading edge 
"by the distance 

-,  G {«+TT *•S} (15) 

Thus in this case the lift coefficient and center of pressure are the 
same as if the wine; were subject %o  the uniform lift distribution of 
an infinite span airfoil,. The actual lift is not uniform; in the region 
I the lift is that of an infinite span airfoil; in the region II the 
lift is less, and in the region III the lift is greater by just enough 
to compensate for the decreased lift in II. As an example, Fig. 6 shows 
the «panwise pressure distribution for the case S345"^u,» 3o° (>|«s). 
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V J 
- c ) 1 

% TAN JUL 

FIG. 6 
PRESSURE DISTRIBUTION 
ALONG A SPAN LINE FOR 
TRAPEZOID WITH    S »45°, 

M»30°, M = 2 

(SEE  FiG. 5) 

general Syametrical Quadrilateral 

The case of a quadrilateral which is symmetrical about a diagonal, 
that diagonal "being parallel to the stream is considered here. The eemi- 
yertex angles at the nose and tail, say %   and Sj   respectively, are not 
necessarily acute angles (see Fig. 8 for the various possibilities)? it 
is assumed only that each lies in the range JU < 8.<*fT*>** - 
It is, of course, necessary that 6-*-5,<*TT. 

The forward pointing triangle is a special case, 8,a TT/z, 
It is also a special case of the trapezoid; «etting StmO  or S-cttUtS 
in Eqs. (14; and (15) leads to 

Z - 2c/3 

(16) 

Here c is the distance from the vertex to the trailing edge-. Fig. 7 
shows the pressure distribution spanwise for the case' S-^S**, 
„/U.»30° (h ~ Z)   • Fig»  7 is applicable to any other- case for which 
ta.n Ss V3"tftt M       *W a ^^orm chanSe of scale. 

For the more general quadrilateral of Fig. 8, the lift distribution 
is shown by Eq. (12) in connection with Eq, (3); the calculation of lift and 
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V3 TAN p. 

Stntl -vtrttx anglt & • 45* 
Moch anglt ju. - 30* 
Mach numb*r M • 2 

FIG. 7 
PRESSURE DISTRIBUTION 
ALONG SPAN LINE FOR 

FORWARD POINTING TRIANGLE 

Airflow 
Direction 

FIG.   8 
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18      Aerodynamic Characteristics of WingB at Supersonic Speed» 

center of pressure involves a tedious integration. The most convenient 
procedure for finding the average pressure over the wing is to integrate 
along any lins (AB in Fig. 8) parallel to the trailing edge on one side. 
This gives for the average value of w, "by Bq. (12) 

—.     Tilt A***•**/* 
w = sii% 7T Pdf- 

where A- -r    t = R     x      >sec$, 
A A+ sec/#i 

1" Jl=l     ftinfiL+KJl *T2~ T-J-\= JA=l    sin(jLL+5,) 2    Jx=««tx?    sin(6+S(> 

The integration leads eventually to 

CL _x5     2 ^,sin2/?-/ysin2>gi (17) 

CLW  W'OO^TT sin/9, sin2/?-sin^sin2/?, 

The angle»ß and ^3, are, of course, to "be measured in radians. This 
expression for CL/C^OO *8 symmetric in the two anglee ß and. ß , 
and therefore is unchangad "by interchanging S and 8, 

The center of pressure is at 

where t is the weighted average of t along AB, with weights proportional 
to the pressure» It is found that 

r  f /HtwJgW?«    . 
t COS 0| = «r -— ?  COS 0,, 

\ frtan Tf^r dtU,-dt 

_ I cosE/g.+cosfe    sin2/g  t sin2/fl-2flcos2A   (19) 

" 2 cos2/*,-cos2/*    2sin*/S. '2Asin2£-2>Ssin2/ff, 
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These formulae contain as special cases the forward pointing tri- 
angle (/3(=7r/;5) and the "backward pointing triangle (ß=-rr/z)« 
For these triangles, the invariancs of lift coefficient (and in this 
particular case, the center of pressure also) with respect to reversal 
of the flow direction may "ba easily verified. It has already heen shown 
that lift coefficient and ce.ater of pressure for the forward pointing 
triangle are the same as if the pressure were uniform (which it is not; 
cf. Fig. 7). For the "backward pointing triangle the pressure i£ uni- 
form. Reversal of direction of flow causes a radical change in pressure 
distribution even though it does not alter the lift coefficient for these 
quadrilateral wings. 

Another special case of interest is the diamond (S, -  $ , ßi ~ß)* 
In this case Eqs. (18; and (19) reduce to 

sin 2/3-2/^0052/6* 
TT sin3/tf 

('20) 

I 2/Si\x\zZ/S 
Z 3 sin2^~2/^cos2/C? 

C I - cos Zß 
(21) 

Using Eq§. (20) and (21), the lift coefficient and center of pressure 
for a diamond have "been evaluated and are presented in the following 
ta"ble. It is seen at once that the property of invariance under re- 
versal of flow direction, which was found to hold for C^, does not in 
general apply to the center of pressure. If such were the case the 
center of pressure pf the diamond would necessarily "be at Z =«• c/a, 
From Tahle I it is seen that the center of pressure of a diamond act- 
ually lies forward of the midpoint, though never forward of 7cJiS 
as long as $^u. 

Ta"ble I. 

ß 0° 100 200 300 400 

ßl(Ctoo 

taacytan/u 

L     .8488 
.4667 

1.000 

.8511 

.4671 
1.015 

.8592 

.4685 
1.064 

.8720 

.4709 
1.155 

.8897 

.4743 
1.305 

(3 50° 60° 70° 80° 900 

tanS/twy/ 

.9120 

.4788 
1.556 

.9376 

.4842 
2.000 

.9646 

.4905 
2.924 

.9885 

.4966 
5.759 

1.000 
.5000 
CO 
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Wing With Dihedral 

The case of a wilng with dihedral, which may "be combined with for- 
ward or "backward swewp at the dihedral point, is reducible "by a conform- 
al transformation to the case of a siaple "bend in the leading edge of a 
flat wing. In Fig. 9, the angle ffi-o has "been taken in the wing (with 
no loss of generality). Let Y 
he the radian measure of the arc 
of the circle subtended "by the 
wing. The part of the circle 
not drawn refers to an independ- 
ent problem of the sane type, 
with a different Y   . The 
angles /3, and ßz   have the same 
meaning as in the plane £ase. 
In the case shown, fit+/3z < Y 
(which incidentally corresponds 
to considerable sweepback it 
case), but this condition is not 
essential, and is assumed here 
merely to simplify the drawing;. 

null 

The potential problem to be 
solved in the/i,(p plans in- 
volves the following boundary 
conditions: 

Wilt« 

FIG. 9 

y~ = 0 for p=0 or f=r, 0<r<l 

XJJ= K,    for 0<f<tf,  , r« I 

w s K2   for V-tf2<^ <r, r * I 

u; = 0    for ^i<j<r-/ff2, r«| 
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/ TT/Y° 
The transformation £ = £       maps the relevant part of the 

unit circle in the £ = ^Qi<p       plane into the upper half" of the unit 
circle in the^'^'c*f'  plane.  It is clear that w is given "by Eq. 
(11), with r replaced by /pf/r     t  and every angle (ß)4 ßz and, <p) 
multiplied "by 777V' 

It remains to specify ß,,ß%) KtJ K^  in* terms of the geometry 
of the wing. As in the plane case, 

C08Ä=7^t » C0S^= tan62 
where S, and $Ä are the angles from the main stream direction to the 
leading edge. The "boundaryvalues K^ and Kg are given "by the same ex- 
pression as for a plane wing, except that the angle of attack is now, 
in general, different for each plane of the wing. Writing ci., an& 
CXo for these "local" angles of attack, one find that 

- giWtan^ K       ocgW tan }x 
K«~    sin/?, K2-     Sjn/y2 

It is interesting to note that in the case of symmetry 

(«,-5», A, *cCa) 
there is a certain dihedral, namely Vs Zß  » for which the "boundary 
condition is w " k over the entire arc y , so that the flow is uniform 
in the whole sector. 

fhe restriction ß%+ßj£ *f      is seen to "be non-essential as in the 
previous case of a "bent leading edge. Also it should "be pointed out that 
for a wing with upswept dihedral [tf<~fT for the upper surface) the, 
lift is decreased in magnitude. 

An application of these formulae may "be found in the perpendicular 
vane at the tip of a rectangular wing, the vane "being large enough to 
project through the Mach cone. This may he regarded as an example of 
a wing with dihedral, one of the angles of attack "being zero. If the 
vane extends both above and below the wing., the lift remains constant 
out to the end of the wing. If the vane is confined to either the top 
or the bottom of the wing, the lift decreases moving along a span line 
toward the wingtip; the lift at the tip is 1/3 of the lift in the cen- 
tral region of the wing, and the spanwise average from tip to Mach cone 
it found by integration to be  / /  ft \ of the lift in the central 
region. »  WS! 
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I. AERODXHAMIG CHARACTERISTICS 01 SOLID RECTANGULAR AIRFOILS AT SUPERSONIC SPEEDS* 

by E. A. Bonncy 

Summary 

The lift, drag, moment, and center-rof-pressure characteristic! of 
rectangular airfoils can readily he obtained for angles of attack "below 
that at which the shock wave detaches from the leading edge of the air- 
foil. This report presents expressions for the above characteristics 
and establishes optimum rallies of aspect ratio, angle of attack, and 
lift-drag ratio for any given conditions of allowable stress, airfoil 
cross-sectional shape and Mach number at well ae method of supporting 
the wing, i.e. by the entire base or on a hub. 

Assumptions 

It was necessary to make certain simplifying assumptions to keep 
the various expretsions reasonably simple and yet accurate. They are 
as follows: 

1. The change in Mach angle with positive angle of attack 
over an airfoil of finite thickness and aspect ratio was ignored. The 
angle will be higher on the lower surface and lower on the upper sur- 
face, thereby offsetting each other to a great extent. 

2. The possibility of secondary tip effects originating at 
the point of maximum thickness of a double wedge airfoil for example 
was not considered. 

3. .Consideration of the phenomena of separation necessarily 
was omitted due to the lack of knowledge of this effect in supersonic 
flow. This factor can cause the center of pressure expressions ob- 
tained herein to be somewhat in error, particularly at high angles of 
attack. A study of the effects of separation is contained in reference 
(12). 

4. A constant skin friction drag coefficient of C])f a .00265 
per square foot of wetted area is used throughout. This is the value 
obtained by von Karman for a Reynolds number of about 20,000,000. It 
is recognized that the actual value may be considerably different than 
this and, inasmuch as skin friction is the predominant factor in the 
drag of thin airfoils, can cause a corresponding difference in the 
values for optimum conditions. 

* This paper is a revision of CM-247 which was originally published as 
an internal memorandum of the Applied Physics Laboratory. Slight re- 
vision was necessary to complete the discussion of the subject. 

23 
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5. The expression for aspect ratio correction to lift curve 
olope for an infinitely thin flat plate was used in deriving optimum 
conditions for simplification. The maximum error that could result from 
tftis assumption is about 3 per cent for practical airfoil sizes, 

6. Throughout the analysis the assumption is made that 

Sin (£ = GC and 
Cos a = I 

This will cause no sizable error for angles of attack up. 
to 15 degrees. 

Nomenclature 

The following nomenclature is used throughout this paper: 

h = wing semi-span 

c - chord 

ySft = 2h » aspect ratio 
c 

M = Mach number 

44.=  VM2    -  1 

R = A* x 4f 

M - Mach angle = Sin'1 I = Tan**1 I 
M      -M- 

p = local static pressure at any point on the airfoil 

P0 = free stream static pressure 

/^ = free stream density 

V = velocity in ft/sec. 

q " '9^     ~  Y Po M§ " free stream dynamic pressure 
2   T 

L = lift 

A = 2bc = wing area 

CL - L a lift coefficient of finite span airfoil 
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C^ • lift coefficient of an infinite span airfoil 

D = drag 

CD - «H -  drag coefficient of finite span airfoil 
qA 

M ~  moment a"bout leading edge of wing 

^M = M = moment coefficient about leading edge 
cqA 

c.p. = center of pressure measured from leading edge 

CD- * «kin friction drag coefficient 

(5D» = form drag coefficient 

Cjv. = yave drag coefficient due to lift 

K \ = coefficient for taper in thickness 

&! - coefficient'for wing form drag 

K4 * coefficient for wing strength 

w - CL 0 = wing loading 

K, = KxKxK4w 
~2T~" 

S = stree* 

s = section modulus 

ti * wing thickness at root 

tg - wing thickness at tip 

<$• -  angle of attack 

/3   » semi-vertex angle of leading edge 

Q = local angle "between any point on the surface of the 
airfoil and the free stream direction 

Y = ratio of specific heat« 

p'= p-p0 
a Ap s pressure coefficient 

Subscript« 

U = upper surface of airfoil 

L = Lower surface 
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I 

F -  forward half of douDle wedge airfoil 

E » rear half 

o = free stream condition* 

Pi8CUBsion 

A. Basic equations of lift, drag, moment? and center of pres» 
sure for infinitely thin flat plates and for airfoils, froth with infinite 
and finite aspect ratios, 

Various methods (references 4, 10, and 11; haye teen developed for 
determining the pressure on an airfoil in supersonic flow where a stock 
wave has formed and is attached to the leading edge. However they do 
not all lend themselves to convenient handling for purposes of develop- 
ing expressions for lift and drag of the airfoils. The one exception 
to this is the Busemann "second order approximation" (see ref. 4 and 
lo; which is usually written as follows: 

p/po= I + 2* cosec e^e+^sec2^ cosec2 2jLLo(tf+cos82>i)e2    (D 

Transforming "by use of the fundamental relationships, 
JLt_ y 

sm>o = s^  ta,n0sB,4/k co8ö=^j an<* %-%. 
a convenient expression for _ P is obtained as follows: 

iL,_2_ e+*#+9*-& e* * ce •c,ie* (2) 

Tnis metnod is found to he very accurate when compared to th*» theo- 
retically correct method of "patching curves" of reference (4) two dimen- 
sional method of characteristics) with the error approaching ahout -2 
per cent in lift, drag, and moment at ahout 60 per cent of the detachment 
angle. Above this the error increases roughly in a parabolic manner un- 
til at the detachment angle it may amount to -10 to -13 per cent, depend- 
ing on the geometry of the airfoil» The angle of attack at which detach- 
ment occurs (called detachment angle) decreases with decreasing Mach 
number and increasing leading edge wedge angle and may he determined 
for any condition from reference (4). The error in center of pressure 
location, neglecting separation, when compared to the accurate method 
is negligible at any angle of attack up to detachment. 

From this expression, it is possible to determine the aerodynamic 
characteristics of any shape of airfoil of infinite aspect ratio 
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and if the loss in pressure at the tips for finite aspect ratio wings 
is also known, then they can he found for any airfoil of any aspect 
ratio. For example, for any wing of infinite aspect ratio and symmet- 
rical ahout its chord line, the lift coefficient can he determined 
simply "by the inspection of equation (2) as "being 

4<L 
CL*= 2C,QC = 

(8 * ±d±ß depending on surface) 
The loste in pressure at the tips due to flow from the lower to 

the upper surface has been determined in references (2) and (8) and is 
shewn, in Fig. 1. It can "be seen from this figure that the assumption 
of a linear loss in lift from the limit of the Mach angle to the tip 
is justified and that the lift inside the Mach cone will therefore he 
one-half of the two dimensional value for the same area. 

With conditions of pressure known at every point on the airfoil, 
it is now possible to develop expressions for lift, drag, moment and 
center of pressure for any type of airfoil. These expressions are 
listed in Table I and are good for all airfoils that are symmetrical 
about both the chord line and a line perpendicular to the chord at the 
midpoint. Sample derivation of some of these expressions will be found 
in the section on "Derivations". 

S. Optimum design conditions for wings of finite thickness 
and aspect ratio for (a) wings supported over their entire base and 
lb) wings supported by a hub. 

In determining the optimum design conditions of aspect ratio, drag, 
and angle of attack for various values of allowable wing stress and type 
of airfoil (which establish the value of Kg), and Mach number, the meth- 
ods of references (7) and (9) were used for the most part. 

It should be pointed out that the problem of establishing optimum 
conditions is, in this paper, principally of academic interest for two 
reasons. First the optimum type of airfoil will not be solid, but rather 
of monocoque conotruction due to the excessive weight of a solid wing 
and secondly, the optimum angle of attack upon which all of the other 
conditions depend is different for a wing on a body than for a wing 
alone. Various trends can be studied however, which will be applicable 
regardless of these factors. 

Derivation» 

A, In this section, the method of derivation of the express- 
ions given in Table I for lift coefficient and center of pressure of an 
airfoil of finite thickness and aspect ratio will be shown. Several 
of the other expressions will be found in the various references (see 
references 1, 2, 3, and 10) although perhaps not in exactly the sane 
for». For the sake of brevity, the double wedge section will be used 
in the following illustrations and the final expressions generalized 
by a method suggested by Busemann. 
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}v 

hVH M- K-C4*H 

(3) 

e, = -cc+/? 

Therefore, the two dimensional pressure difference over the front and 
rear halves of the airfoil, 

(4) 

Rememhering that the lift in region C is equal to half of that in region 
A (for a like area) and likewise the lift in region D is half of that of 
B, than 

CL 2bc 
5) 
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Uaing the expressions, 

2b 
C«TS and R=AR\^2lj" AR 

the coefficient of lift "becomes 

CL=2C|CC 

29 

(6) 

(7) 

This expression applies to a double wedge airfoil only. However, Buse- 
mann has pointed out that the expression can he made general for all air- 
foils that are symmetrical ahout their chord line and a line perpendicular 
to the chord line at the midpoint "by substituting the parameter of cross- 
sectional area divided "by the chord squared in place of the half wedge 
angle. Therefore for a douhle-wedge airfoil, 

Acs 
C2 

= 
tc 

ic2"" 
t 

2c = 
ß 
2 

ß ~ 
2Acs 
.2 = 2A' 

(8) 

Values of A* for various types of airfoils are noted in Taole I 

Therefore if p       2Cg 
C,=^and G3= — 

(9) 

Inasmuch as the lift coefficient for infinite aspect ratio is 

ÜL«>    to 
then the aspect ratio correction to 2 dimensional lift (and drag dun 
to lift) U 

C,      I .. - ./. 
(11) 

CL 
^--I-^U-CBA') 
00 

The center of pressure is ohtained "by summating the center of pres- 
sure of each region times the total pressure in that region for the en- 
tire airfoil and dividing hy the total pressure or lift force. 
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Referring again to the sketch of the airfoil, 

,/2b + 4b-§£\     3R_2 /££\       lf"Mbttl _ 3R-2 
.v H V c ^)= 6 ^2b + 2b-J:/ ~ I2R-6 (12) 

lj
^ c   . ^,    4c 

9R-I4 

»•- *•  l2RH8 

(Hi) = 2.  J l_ 
. '©   3 X 2      3 

fc-P\     ±.5.   1    1 
\ c ®    2     9 x 2 = 9 

Area of each region 
f     C DC 

® = (2b"2W)i=(2R"3)2R 
,»__£_.£ c£    _bc_ 
^ ~ 2W 2 " 4M-     2R 
(B-ili. _ 3cf,_    be. 
(0)-2M- 2  ~ 4M- ~ 3 2R 

Therefore the center of pressure will "be, (omitting factor he 
from top and hottom; 2E 

e,p,   (2C|^4Cga^|(M^(2R-,)4xixj|t(2C,a-4C2atffel)(2R-3)4xix3] 

(2Cla+4C2a/y)J2RH+^xlJ + (2C,<r-4C2a/5)[2R-3+^x3l 

_ R-3 -CaA^R-l) 
2R-I + C3A' (W) 

This expression likewise is general for all symmetrical airfoils 
when expressed as a function of A' rather thanß . 

fi '" 
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B. For a given value of allowable stress at the root section, 
there will he an optimum aspect ratio which, for a given lift, will pro- 
duce the least drag. At low aspect ratios, the tip loss will he great 
and hence the area for a given lift will he large while at high aspect 
ratios the thickness and hence the drag for a given stress will he large; 
therefore the optimum aspect ratio will he somewhere in "between these 
two conditions and is obtained as follows: 

D = 
^^fe)*^ 

(15) 

(<£ in degrees from this point on.) 
Tfow for a given lift, 

A 
L = CLo9c^Aflo = CLqA     (16) .. A = 

Substituting into (15) 

D 

(**>.) 

(17) 

•OOI22a2(CL/C|J(lA«,        K^KIYV,,      CD^A, 

*fL/cJ «<VQJ    (VO «•) 
.00122-2    *-*<**• 

dAffl * ^(CL/CLJ 
Now for a double wedge airfoil the section modulus is 

c 3 £tl  m  (wbc)b <20> 
24  S-"2S^ 

where the spanwise center of pressure is conservatively assumed to he 
at one-half the distance to the tip. Prom this expression the thickness 
ratio becomes a        * 

where 1A  is a function of the cross-sectional shape and is given in Table 
I for various airfoils. 

Equation (19) now becomes, 

D        .00122 oc2     . K3R* +CDf-M- (22) 
T 

* *(VO 
NOTE 

'A3E3   32  &   33 
TRANSPOSED 
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The parameter Ki*p2 is plotted in Figs. 12 and 18 to show the variation 
in thickness ratio. 

From the expressions for drag coefficient 

r      -0O122g2 „      |   %   K3/lRb 

cD=   ^   (|-2R)+~sr+c°f 
&.ud lift coefficient 

~      .Q698QC   ,.      I   . 

the drag-lift ratio "becomes • . 
D K3ARb + CDfM- 
r=.OI745<r + o698(i_j_)a w 

Differentiating with respect to CC and optimizing, the optimum angle 
of attack becomes, 

aopt.- 28.6w —g
5     , <», 

and the minimum drag-lift ratio "becomes 

(T-)M,N=-50Y 2R-I 2 Q(ZH"1) \/äR(K3ARb+CDf*ti 
' V2R   'v        2R-I 

2R(K3ARD+CDfM) (30) 

ond ' 2RH ~~ 

f-k)      =  \/~  2R- 1  
V D 'MAX      V 2R(K3ARb+C0f AH (31) 

The interesting relation "between maximum lift-drag ratio and optimum 
angle of attack is to "be noted. 

**     #J    \     28.65 ^     ,    .. I «opt (deg^ = 77-7-7-    or    ccopt (rod.) = 
(VbU Wl 2(L/D)MAX     (*) 'MAX 

Thia relation will "be true for a wing alone or for a wing and "body com- 
"bination. 

From the above expressions, the maximum li^t-drag ratio and optimum 
angle of attack are found to "be very nearly alike (within £ 3 per cent) 
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where K3 =,-  '  • (23) 
o 

By a more arduous means, it may "be shown that for a wing supported 
"by a huh or shaft, the exponent of the aspect ratio will "be approximately 
3/2 for values of shaft diameter equal to 1 1/2 - 2 times the maximum 
thickness at the root. This is an approximation ("because the value must 
again he 2 for huh diameters equal to or greater than the chord length), 
hut it will he shown that the method of support does not affect the aero- 
dynamic values to any great extent, hut simply changes the optimum aspect 
and thickness ratios. 

Optimizing equation (22) for aspect ratio, 

d/KM*(CL/cLj; = 0 

Using the expression for aspect ratio correction to lift curve slope 
of a flat plate for values of R>1, the expression for optimum aspect 
ratia for a wing supported over the entire "base, "becomes, 

^•3=^ R2(4R-3) (24) 

and f os wings supported "by a huh, 

K3  .„%»#,«      5 , (25) ^-ä^CSR-f) 
These expressions are plotted in Figs. 7 and 13 to show the varia- 

tion of optimum aspect ratio with Mach number and the aerodynamic-strength 
parameter K3. The corresponding expressions for values of R < 1 will not 
he derived here "because, for the most part, such values are outsids of the 
realm of practical aspect ratio - Mach numher combinations. 

From the development of optimum aspect ratio, it "becomes apparent 
that, for wings supported over their entire base, that 

K,r2=K3dR
2    '     <«) 

and for wings supported by a hub, 

K,78 = M& (27) 
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for "both methods of support and the mean ralues are shown plotted in 
Figs. 9, 10, 15, and 16. 

In order to determine the value of wing loading, w to "be used in 
evaluating Kg, it Is necessary to know either the weight and wing area 
or the lift coefficient and dynamic pressure. The dynamic pressure will 
depend on the. choice of altitude and Mach number. Inasmuch as the opti- 
mum aspect ratio and angle of attack have "been established, the optimum 
lift coefficient can readily he found and develops to "be very nearly in- 
dependent of .the method of support and the parameter K3. The mean value 
is plotted in Figs. 8 and 14. 

Results 

Expressions for lift, drag and moment coefficients and center of 
pressure for thin flat plates and airfoils of infinite and finite aspect 
ratio are given in tahle I. The lift curve slope correction and center 
of pressure expressions for a flat plate will he found plotted in Figs. 
3 and 4. The effect of thickness on lift has not been added due to its 
small magnitude and the fact that it does not lend itself to a general 
expression for plotting, however the effect on center of pressure is quite 
sizable and two sample cases have "been plotted in Fig. 4. The express- 
ions of tahle I are exact (within limits of accuracy of the Busemann sec- 
ond order approximation) down to a value of R - 1. Below this value, a 
linear extension to 0 will he approximately correct. 

The loss in lift at the tips due to flow around the tips as found 
in references (2) and (8) and is plotted in Fig. 1. A straight-line 
variation is also shown to illustrate the fact that the lift in the af- 
fected region (ins5.de the Mach angle from the tip; is one-half of the 
amount for two dimensional flow for the same area. 

"A correction factor, K\  for tapered (in thickness) airfoils oA 
rectangular planform to he used in the expression for Kg is given in 
Fig. 5 and the terms explained in Fig. 6. These two curves were taken 
directly from reference (6). 

Figures 7 to 12 and 13 to lfi represent the optimum aerodynamic char- 
acteristics of symmetrical wings as a function of Mach number and Kgvl 

the aerodynamic-strength parameter, for wings supported over their en- 
tire base and for wings supported by a hub. The similarity in magnitude 
of the aerodynamic coefficients for wings supported over their entire 
base as compared to wings supported by a hub is to be noted. Optimum 
aspect ratio and thickness ratio are different for the two cases, but 
compensate for each other so that the coefficients are nearly the same. 

Conclusions 

The Busemann second order approximation theory for the pressure 
over a two dimensional wing and the known theory for pressure loss near 
the tips of a finite span airfoil provide a convenient method for finding 
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the aerodynamic coefficients for flat plates and airfoils of finite and. 
infinite aspect ratio at angles of attack "below the detachment angle in 
supersonic flow. This second, order theory is very accurate for angles 
of attack up to about sixty per cent of the detachment angle after which 
it departs from the exact theory at a more-or-less parabolic rate. 

By a method also suggested "by Busemann, it is possiole to general- 
ize the expressions to include any type of airfoil section which is 
symmetrical about its chord, line and a line perpendicular to the chord 
line at its midpoint. 

Decreasing the aspect ratio will decrease the lift, wave drag (here- 
in defined as the drag due to lift}, and moment coefficients and cause 
the center of pressure to move forward. Increasing the thickness will 
increase the lift and drag coefficients of airfoils of finite aspect 
ratio very slightly, "but will decrease the moment coefficient and cause 
the center of pressure to move forward quite markedly for airfoils of 
finite and infinite aspect ratio. Increasing Mach number will either 
increase or decrease the coefficients depending on the magnitude of the 
Mach numbers being considered and the aspect ratio. 

The expressions for lift check very well with available test data. 
The center of pressure expressions, however, make no allowance for sep- 
aration effects (and other minor factors noted in items 1 and 2 under 
"Assumptions") and therefore will be somewhat in error, the error being 
a function of the angle of attack. The expressions will make it possible 
to determine the magnitude of the separation effects on center of pres- 
sure location however. 

Using the information developed above, the optimum conditions of 
aspect ratio and angle of attack and the corresponding coefficients for 
rectangular wings supported by the entire base and supported by a hub 
can be determined. For a given value of the aerodynamic-strength para- 
meter £3, the aerodynamic coefficients are not a function of the method 
of support, being almost identical for either method. The aspect ratio, 
however, will be higher for a wing supported by a hub, the thickness 
ratio also being higher in general to compensate for this effect stress- 
wise. Other effects may be noted by a study of Fig. 7 through 19. 

The expressions for lift, drag and moment coefficients and center 
of pressure will be found in Table I. Note that an increment for skin 
friction has been added to the drag equations which will not appear in 
the derivation of the expression. 
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III. THE REVERSE DELTA PLANFORM 

A section on the "reverse delta" type of wing as discussed in 
CM-258*was to have "been included in this report, however the assumpt- 
ions made in that paper were not exactly correct, and therefore only 
a short discussion of thi8 planform will he included here. 

The reverse delta wing has the planform of an isoceles triangle 
with the "base facing into the airstream. The angle of the rear sur- 
face is greater than the Mach angle so that no tip loss effects will 
he felt over the surface of the wing. It was assumed in the refer- 
ence report that thiB therefore constituted a wing whereon only two- 
dimensional flow existed and the characteristics corresponded to the 
two-dimensional case. Actually however, the pressure on a surface 
behind a yawed corner, such as the aft portion of this type of wing 
when constructed with a double-wedge section (region B of figure) is 
a function of the component of Mach number which is normal to the 
corner, %. Furthermore, the pressure inside the Mach cone created 
at the point of maximum thickness (region C of figure) is of the 
conical flow type and must "be computed "by the conical field method. 
Only in region A is the flow of pure two-dimensional character. 

Because of the various types of flow it will be difficult to 
develop a general expression for form drag and moment coefficient. 
The design should not he overlooked however, inasmuch as it has dis- 
tinct structural advantages and the drag may he very little worse than 
the two-dimensional case. The lift coefficient will he very close to 
the two-dimensional value, being equal to it for zero thickness. 
(See figure below) 

\ 

\ 

\ 

\ 

\ 

*   "Aerodynamic Characteristics of Reverse Arrow Wings at Supersonic 
Speeds«, APL/JHU (May 1946). 
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IV. LIFT AND DRAG CHARACTERISTICS OF DELTA WINGS AT SUPERSONIC SPEEDS 

by E. A. Bonney 

Abstract 

The lift characteristics of the delta type of wing with the leading 
edge "both inside and outside of the Mach cone from the rertex of the wing 
have teen determined by Stewart (1), Snow (2), and others, and the drag 
characteristics (for double wedge section only) have "been determined "by 
Puckett (3). using the methods of references (4) and (5), this informa- 
tion is herein used to determine optimum conditions of lift-drag ratio, 
angle of attack, etc., for comparison with other wing planform shape». 
The actual pressure distribution for wings of finite thickness io not 
known at this writing, and therefore moment and center of pressure data 
are not included in this report. It is shown that, except for relative- 
ly large thickness ratios at low Mach numbers, the delta type of wing 
has lower values of maximum lift-drag ratio than the reverse-arrow type 
for which the flow is entirely two-dimensional. The relatively large 
root chord length required for a given lift is another disadvantage of 
the delta wing. 

The principal advantage of this type of airfoil is in its use as a 
tail surface due to the aft center of pressure location. 

In two reports (6) (7) concerning the lift of delta wings, it has 
been mentioned that the resultant force on the surface of delta wings 
entirely inside the Mach cone will he tilted forward of the normal to 
the chord of t^e airfoil hy an amount which depends on the ratio of 
the complement of the sweephack angle to the Mach angle, approaching 
a limit of cC/2 ahead of the normal for a sweephack angle of 90 degrees. 
This is due to the subsonic effect wherein the normal Mach number con- 
trolling the pressure is les6 than 1, and will only he possible where 
the leading edge öf the wir.g is rounded to permit suction peaks simi- 
lar to the subsonic case. 

This effect has not been realized in any tests to date however, 
and the following analysis assumes that the resultant vector was al- 
ways at right angles to the chord of the wing. 
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Assumptions 

The assumptions noted in reference (4) concerning separation, skin 
friction drag coefficient and linearizing trigonometric functions will 
also he applicahle in this report and in addition: 

1. The lift curve slope correction for delta airfoils is 
assumed to he independent of thickness ratio. No sizeable error will 
result from this assumption "because of the small thickness ratios which 
are used. 

2. The slope of the lift curve as derived "by Stewart is at 
an angle of attack of zero degrees. It is assumed here that the slope 
is constant with angle of attack. This assumption should introduce no 
sizeable error at the angles for maximum lift-drag ratio which are con- 
sidered herein. 

Nomenclature 

The nomenclature of references (4) and (5) is used throughout with 
the following additions (See also Fig. 13): 

0 = angle "between the leading edge and a normal to the flow 
direction 

a =•• Tan 0 = parameter of leading edge gweepback angle compared 
-K-    with Mach angle 

(J0= planform semi-vertex angle =90-0 

c = "basic chordwise dimension measured from the apex to the 
position of the tip 

1 = root chord 

r =• chordwise distance from most rearward point to point of 
maximum thickness divided "by c 

a = (fi -„,11 
c 

* « (l-r)c 
• 1 

T = thickness ratio = t/c 

y = distance from wing center line to center of pressura of 
the semi-»pan. 
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Discussion 

The delta airfoil consists of a pianform shape which is symmetrical 
about its centerline, pointed at the front, has a sweptback leading edge 
and straight trailing edge normal to the center line. 

For the case where the leading edge is outside of the Mach cone, 
the lift remains identical in value, hut not in distribution (2)  to the 
two-dimensional case. The form drag, however, is slightly higher, hence 
the maximum lift-drag ratio will he slightly lower than for the reverse 
arrow type for which two-dimensional lift and drag apply. 

For delta shapes where the leading edge is inside the Mach cone, 
the lift curve slope will decrease from the two-dimensional value "by 
an amount which is a function of the ratio of the leading edge sweep- 
hack angle to the complement of the Mach angle (defined "by the parameter 
"n") as shown in Pig. 1 (1). (Note that when n = 1, the sweephack angle 
it just equal to the complement of the Mach angle, and n = 0 corresponds 
to a straight leading edge.; The form drag will also he a function of 
nn" as well as "being a function of the thickness ratio, location of point 
of maximum thickness, and Mach number. The coefficient of form drag was 
deter» ned in reference (3) and is shown in Fig. 2. It can he seen that 
for la„ge values of n, the form drag is greatly reduced from the optimum 
two-dimensional value, where n = 0. Hence, for conditions of high wing 
leadings where the required thickness ratio "becomes large and form drag 
oecomes a "big proportion of the total drag for optimum lift-drag condi- 
tions, the delta type of wing design will theoretically show up to ad- 
vantage over the reverse arrow type in the lower range of Mach numhers. 
However, for most practical thickness ratios and Mach numbers, the re- 
verse arrow will still give higher lift-drag ratios as shown in Figs. 3, 
4, and 7. A definite disadvantage of the delta wing where n is large is 
the relatively large root chord length required for a given lift. The 
center of pressure travel of this type will prohahiy he large also due 
to the large chord length and the odd type of pressure distribution (2) 
with the leading edge either inside or outside the Mach cone. 

It is to he noted that this analysis is for the double wedge type 
of airfoil cross-sectional shape only, but the results obtained herein 
will be qualitatively comparaDle for any type of cross-section. 

Figure 3 shows the actual thickness ratios at which the delta type 
of airfoil with n " 1.3 and 2.5 will be superior to the reverse arrow 
type while Fig. 4 shows the same effect when considered from the aero- 
dynamic-strength combination standpoint. Limiting values of Kg at n s 

0, 1.3, 1.7, and 2.5 are ohown for purposes of comparison. Fig. 5 shows 
the maximum lift-drag ratios for the range of practical values of Kg for 
value« of n» 1.3 and 2.5. 

A comparison of the maximum lift-drag ratios of delta and reverse 
arrow wingt is shown in Fig. 7. The improved characteristics of the delta 
type wing for high thlckneas ratios at low Mach numbers is evident from 
the curves* 
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In references (4) and (5), the following expressions were derived 
for lift and drag coefficients: 

CL « ±S£ /°L_\  , (a in radians) 
V Leo / 

Equation (3) applies for wings supported over their entire hase. 
K3 will he eraluated oelow. 

The optimum angle of Attack is, 

*,M8 + CJ5.-M- 
tfopt« 28.65   UcJC. ' 

and the aaxisrum lift-drag ratio "becomes 

0 A ~ 
D max   yK3M2 + 0Df* 

Yaluee of CL/CLOO a»a *1 can he read directly from figs. 1 and 2 
respectively. The skin friction drag coefficient is taken as .0053, as 
in references 4 and 5. The aerodynamic-strength parameter S3 is depend- 
ent on the apanvise pressure distribution as shown in the following de- 
rivation: 

« «SiL.fi = 2*2. x  0x1x1 
24   5  ^     *  * 

where y/b is the ratio of the distance oetween the wing center line and 
the center of pressure, to the wing semi-span. 

- By the methods of reference (2)*, it may he shown that, for wings 
whose leading edges are outside of the Mach oone, 

2c y * ~ _ 
3 ? 

* This reference considers th» distribution over a flat plate only. How- 
ever it i» assumed here that the spanwise variation will he similar for 
a wing having a finite thickness. 
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where i  is found as the limiting case of aquation (28) of that reference 
to "be 

t=Itan^ (1+^^) 

In tho above terminology,  is defined as follows: 

Cos/2 =   1 
*r Tan w. 

Therefore 

£ =  2  Cos/3 (1 +   2<Q ) 
*  3 7T Sin 2/3 

The variation of y/b with/3 as defined above will "be found plotted 
in Fig. 13, 

Now from equation (6), 

t£ = s2 = 3v/^2  y_ 
C2        4 S    1) 

Then K3 = 
Kl K4 w £ 

. 8 S    D 

where K4 = G as in references 4 and 5. 

For the case of the delta airfoil entirely inside the Mach cone, 
reference 5 indicates that the value of y/b for large values of n is 
the same as calculated above at n = 1.0 (  =0), namely, 

21 = JL = *4244 
*  sir 

Inasmuch as the slope of the curve of Fig. 13is0at/3 = 0, it will 
he assumed that this value is constant for any value of n greater than 
1.0, i.e., all case« of leading edge inside the Mach cone. Therefore 
the expression for K3 will he: 

*3 = Kl K4 w 

18.85 S 

Since the original preparation of this report, addition--.! calcul- 
ations for the characteristics of the delt(\ vdng with the trailing edge 
swept forward r.nd backward h-"vc boon carried out by Dr's. Puckett 'ind 
Stow/rt (8) -'ml they hwe very kindly consented to the inclusion of 
this information in this report. These d.-.tn will be found in Figures 
13 through 22. No gener? 1 study of optimisation hr.B been mudc due to 
the detailed investiertion involved. 
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Vo SECTIONAL CHARACTERISTICS OF STANDARD AIRFOILS 

"by E. A. Bonney 

In selecting the optimum cross-sectional shape of airfoil for use 
in supersonic flight, one is tempted to choose the double-wedge type "be- 
cause of its low form drag per unit thickness. This is a fallacy "bee. 'se 
drag per unit stress is the proper criterion for design. The increase, 
drag of other types must he "balanced against their increased strength 
(section modulus) to determine the optimum shs^e. 

With this in mind, the following table and curves have "been con- 
structed to show the relation between drag, stress, and thickness 
ratio for various types of airfoils including one designed "by Dr. A. E. 
Puckett in which the optimum shape to give minimum drag per unit stress 
was the design criterion. It is shown that the optimum shape is only 
very slightly (0.7 per cent) better than the "biconvex (double circular 
arc) section. For practical purposes, therefore, (inasmuch as the 
Puckett wing would be difficult to machine) the biconvex type of cross- 
section is the optimum shape of airfoil for ä given allowable stress at 
the root of the wing. 

Modified!    I   Modified Shape Biconvex 
Optimum 

(Puckett) 
Double 
V*44e Double Wsdge )ouble Wedge 

ct' 
13.125 13.87 

_ctf 
24 

Ü 
12 

ct* 

JL 
C3 

T2 T2 

13.125 13.87 
I? 
24 

I2 
12 

T2 

12 
(2-3a) 

\]j^l 
I.333T 

E 3.2531 1.8? 
£ X* 

2a 
© 

cDo\/fc2-l 
17.50 t f7.38s 24 s 18 s S s 

a(2-3o)c3 

*  c B fraction of chord length having 
wedge shape (each end) 

0  Cfi - for   infinite  span   ratio 
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